GROUP 2 – ALKALINE EARTH METALS

Elements	Be	Mg	Са	Sr	Ва		
Atomic Radius	 ↑ down group (outermost e a Shielding effect increases is more fully filled electron shell Effective Nuclear Charge ↓ 	↑ down group (outermost e are further away from the nucleus) Shielding effect increases is more significant than the increase in Nuclear Charge (outermost e further away from nucleus with more fully filled electron shells) Effective Nuclear Charge (house charge is a structure of the structure					
Ionisation energy	 Generally ↓ down group as Shielding effect increas ↑ in atomic radius as a f larger shielding effect co Effective Nuclear Char 	Generally ↓ down group as Shielding effect increases is more significant than increase in Nuclear Charge ↑ in atomic radius as a fully filled electron shell is added for every element larger shielding effect coupled with a larger atomic radius outweighs the increase in nuclear charge Effective Nuclear Charge ↓ down group 					
Electronegativity is tendency of an atom to attract bonding electrons to itself in a covalent bond	 Generally ↓ down group as Shielding effect increas ↑ in atomic radius as a fill larger shielding effect co Effective Nuclear Char 	Generally ↓ down group as • Shielding effect increases is more significant than increase in Nuclear Charge • ↑ in atomic radius as a fully filled electron shell is added for every element • larger shielding effect coupled with a larger atomic radius outweighs the increase in nuclear charge • Effective Nuclear Charge ↓ down group					
Melting Point	 Decreases from Ca to Ba dute Same no. of delocalised Atomic size increases dot Mg do not conform to the tree 	e to electrons : 2 own group nd because of high charge	density that affects the nur	mber of electrons to be del	ocalised		
Good reducing agents	 E value becomes more negative down group Reactivity increases down group Elements become more easily oxidised down group Elements become more powerful reducing agents down group Strength of reducing agent increases down group 						
Reaction with Oxygen	React with oxygen to produce	• React with oxygen to produce Oxides: $2M + O_2 \rightarrow 2MO$ $Ba^{2+}(aq) + 2e^- \rightleftharpoons Ba(s) -2.91V$					
Reaction with Water	hardly any reaction, even with steam [due to high IE that makes loss of electron difficult; protected by inert impermeable BeO layer]	reacts very slowly with cold water, but rapidly with steam to form the oxide and H ₂ Mg (s) + H ₂ O (g) \Leftrightarrow	React with cold water M (s) +	with increasing vigour dow hydroxide and H₂ 2H₂O (I) ⇔ M(OH)₂ (aq/s)	In the group to form the $(g) + H_2 (g)$		
		MgO (s) + H ₂ (g)	Effervescence, heat rele	: (aq); Ba(OH) ₂ (aq) ased, sinks in water			

Elements	Be	Mg	Са	Sr	Ва	
Reaction of Oxides with Water	amphoteric and does not react/dissolve in water	reacts very slowly with water		react vigorously with water	r	
	[due to small ionic radius of Be	MgO (s) + H₂O (l) ⇔	MO	(s) + H ₂ O (l) ⇔ M(OH) ₂ (a	aq/s)	
	and high lattice energy]	Mg(OH) ₂ (aq)			• /	
		Sparingly soluble	heat released, sinks in w	ater, precipitate may/may r	not be produced	
Thermal decomposition of	Thermal stability increases down the group	(thermal stability decrea	ses) down the group → th	ermal decomposition ten	nperature increases	
Carbonates,	• Group 2 carbonates, nitrates	and hydroxides are therma	ally unstable; they decompo	ose on heating to form oxi	des.	
Nitrates and	 2M(NO₃)₂ → 2MO + 4NO 	2 (acidic/brown) + O ₂				
nyuloxides	• $MCO_3 \rightarrow MO + CO_2$ (acid	dic)				
	• $M(OH)_2 \rightarrow MO + H_2O$ • Thermal decomposition of the	se compounds occurs as	a result of polarization off	act everted by the cation	(of high charge	
	density) of the large anion		a result of polarization en	ect exerted by the cation	(or high charge	
	Down group, ionic radius o	f the cation increases				
	Charge density decreases of the second	down group causes → Po	plarizing power of cation	decreases		
	Ability to distort electron cloud	d of the anion decreases &	bond energy C-O bond i	ncreases → Stability incre	eases down the group	
	Weaken the C-O or O-H or N	-O bonds				
		oxygen aton	n on the			
		way to bec the O ²⁻ a	coming			
			, 2⊖			
		(Mg ²⁺)				
		L				
		delocalise	ed electrons			
		being pull the positi	ed towards			
		weakening	g C–O bond			
	The electron cloud of CO^{2-} ion before The electron cloud of CO^{2-} ion is greatly. The electron cloud of CO^{2-} ion is less					
	polarisation. $distorted by the smaller Mg^{2+}$ ion. $distorted by the larger Ba^{2+}$ ion.					
Reaction of Gp II	Unable to form stable peroxid	e (⁻ O-O ⁻), which has large	electron cloud size, due to	high charge density of	$BaO_2 + 2H_2O \rightarrow$	
Peroxides with	the cation				$Ba^{2+} \pm 2\Omega H^{-} \pm H_{2}\Omega_{2}$	
vvater	Small cation size/high polarizing ability Ba ²⁺ + 2OH + H ₂ O ₂					
	Ability to distort electron cloud	t of the anion decreases \rightarrow	 Stability increases down to 	ine group	$B_{2}O_{2} + H_{2}SO_{4} \rightarrow$	
					$H_2O_2 + H_2O_4$ /	
					11202 1 20004	

© Smartlab

Atypical Behaviour of Beryllium	 Theory Beryllium differs from the other Group II elements; it has properties closer to that of aluminium - THE DIAGONAL RELATIONSHIP. Being the head element of a Group <i>it has</i> • a much smaller ionic size (a greater charge/size ratio - highly polarising) • a much larger ionisation energies than those elements below it 			
Ch	 so is less likely to form ions compounds (BeCl₂) show covalent character a often soluble in organic solvents bave lower melting points often hydrolysed by water 			
Sr	maximum co-ordination number of 4 ordue to small size beryllium hydroxide is AMPHOTERIC ordus of the dissolves in both acids and bases			
ED	$\begin{array}{rcl} Be(OH)_{2(s)} &+& 2H^{*}_{(\mathrm{aq})} &+& 2H_{2}O_{(!)} & \longrightarrow & [Be(H_{2}O)_{4}]^{2+}_{(\mathrm{aq})} \\ && & & & & \\ Be(OH)_{2(s)} &+& 2OH^{-}_{(\mathrm{aq})} & \longrightarrow & [Be(OH)_{4}]^{2-}_{(\mathrm{aq})} \end{array}$			
Similar behaviour of Be and Al	 f 1. Both Be and Al dissolve in alkali to liberate hydrogen gas 2.Both BeCl₂ and AlCl₃ are covalent; high charge density of cation ⇒ significant polarization on the large anion 3. Both BeCl₂ and AlCl₃ are acidic when hydrolyses in water with pH of about 3-4. 4. BeCO₃ is unstable at room temperature and Al₂(CO₃)₃ does not exist 5. Both Be(OH)₂ and Al(OH)₃ are amphoteric (react with acid/base but not water) 6. Both BeO and Al O₂ are amphoteric 			
State 2 physical properties of iron that differ from calcium	Both (m.pt. and density) of Fe are higher than those for Ca [1] m.pt.: (due to:) stronger lattice/bonding or more delocalised electrons [1] density:(due to:) heavier atoms/larger Ar but (roughly) the same/smaller radius/size or closer packing [both mass and size need to be referred to] [1]			

Similar behaviour of	1. Both Li ₂ CO ₃ and MgCO ₃ are relatively insoluble in water.
Mg and Li	(group I carbonate soluble in water)
-	2.Li ₂ CO ₃ and MgCO ₃ thermally decompose to produce carbon dioxide.
	(group I carbonate does not thermally decompose)
	3. LiNO ₃ and Mg(NO ₃) ₂ decompose to produce nitrogen dioxide and oxygen.
	High charge density of Li ⁺ polarizes and distorts e cloud of nitrate
	(group I nitrate \rightarrow nitrite(NO ₂ -)/smaller anion (KNO ₃ \rightarrow KNO ₂ + $\frac{1}{2}$ O ₂)
	less easily polarised + oxygen)
	4. Li ₂ O ₂ and MgO ₂ are unstable due to the high charge density of Li ⁺ and Mg ²⁺ .
	(group I peroxide stable due to low polarizing ability of cation)
	5. Li ⁺ and Mg ²⁺ in agueous state form complex ions, but with different coordination number.
	$[Li(H_2O)_4]^+$; coordination number = 4
	$[Mg(H_2O)_6]^{2+}$; coordination number = 6
Atypical behaviour	1. Li ₂ CO ₃ is insoluble in water as compared to other group I carbonates which are soluble in water.
of Li as a group I	2.Li ₂ CO ₃ thermally decomposes to produce carbon dioxide, unlike other group I carbonates which
metal	are stable and do not decompose under normal heating
	$Li_2CO_{3(s)} ==> Li_2O_{(s)} + CO_{2(q)}$
	3. LiNO ₃ decomposes to produce nitrogen dioxide and oxygen, unlike other group I nitrate which
	decomposes to produce group I nitrite (MNO ₂) and oxygen
	$4LiNO_{3(s)} = 2Li_2O(s) + 4NO_{2(q)} + O_{2(q)}$
	$2MNO_{3(s)} = 2MNO_{2(s)} + O_{2(q)}$
	4. Li ₂ O ₂ is unstable due to the high charge density of Li ⁺ , unlike other group I peroxides which are
	stable
	$2M_{(s)} + O_{2(q)} = \gg M_2O_{2(s)}$
	$M_2O_{2(s)} + 2H_2O_{(1)} = > 2MOH_{(aq)} + H_2O_{2(aq)}$
	5. Li ⁺ in aqueous state forms complex ions ([M(H ₂ O) ₄] ⁿ⁺), unlike other aqueous group I cations which
	form ion-dipole attraction forces with polar water molecules

Summary / Study the Row

Complete the table below and state the trend for the examining the <u>trend down group 2</u>: Down group 2 elements,

Relative ease of losing electron	1	Standard electrode potential becomes more/less -ve/+ve	↓	Becomes stronger/weaker oxidizing/reducing agent	
Reactivity of metal	↑	Reactivity of metal with water (Be no rxn; Mg - slow)	1	Reactivity of metal with steam (Be no rxn)	1
Size of metal atom	1	Melting point (exception Mg)	→	Enthalpy of atomization becomes more/less $-ve/+ve$ (exception Mg) M(s) \rightarrow M(g)	↓
Size of cation	1	Charge density of cation or polarizing ability of cation	→	Enthalpy of hydration becomes more/ less –ve/+ve; $M^{2+}(g) \rightarrow M^{2+}(aq)$ (ΔH_{hyd} proportional to charge density)	(
Electronegativity (ability to gain electron)	↓ 1	Ionic character of oxide (diff in En of metal and oxygen increases) BeO – predominantly ionic with covalent character; amphoteric/not soluble MgO – predominantly ionic with covalent character; base; partially soluble	↑ U	Covalent character of chloride (diff in En of metal and Cl increases; charge density of cation decreases therefore lower polarizing ability to distort e cloud of CI ⁻)	↓
Electropositivity (ability to lose electron)	1	Summation of 1 st and 2 nd IE becomes more/less –ve/+ve	\rightarrow	pH of chlorides (acidic towards neutral; covalent chlorides are acidic and ionic chlorides are neutral) BeCl ₂ – pH 3-4 MgCl ₂ – pH 6.5	↑ to 7

Label with ↑ or ↓ or cancel Study the Column Down group 2 compounds,

Charge density of cation or polarizing ability of cation Stability of compound	\rightarrow	Peroxide, nitrate, hydroxide and carbonate becomes <u>more</u> stable <u>stability</u> Relative ease of thermal decomposition of peroxide, nitrate, hydroxide and carbonate	↑ ↓	Peroxide, nitrate, hydroxide and carbonate becomes <u>less</u> unstable <u>instability</u> Decomposition temperature of peroxide, nitrate, hydroxide and carbonate	→ ↑
Size of cation	↑	Lattice enthalpy of ionic compound becomes more/less –ve/+ve $\Delta H_{latt} \propto \underline{Q^+ Q^-}$ $r^+ + r^-$		Enthalpy of hydration becomes more/less –ve/+ve $\Delta H_{latt} \propto \underline{Q^+}$ or $\underline{Q^-}$ r^+ r^-	
Reactivity of oxides (weaker ionic bonds btw cation & O ²⁻)	1	Solubility of oxide in water (BeO – not soluble and MgO – poor solubility)	1	Reactivity with water becomes more/less exothermic Better solubility of the hydroxide	
pH of aqueous chloride solution (higher charge density of cation & its effect on water) (BeCl ₂ : 3-4, MgCl ₂ : 6.5)	↑ to 7	Acidity of aqueous chloride solution (alkalinity increases)	→ n2	elf	
Enthalpy of solubility of hydroxide becomes more exo/less endo		Solubility of hydroxide (memorise)	1	-	
Enthalpy of solubility of sulfate/chloride becomes more endo/less exo		Solubility of sulfate/chloride (memorise)	↓		

Label with \uparrow or \downarrow or cancel

Reaction involving n	netal	Q1. Which of the following group 2 compounds when reacted
$Mg(s) + H_2O(g)$ –	MgO (s) + H ₂ (g)	with water releases a gas that turns red litmus paper blue?
M (s) + 2H ₂ O (l)	M(OH) ₂ (aq/s) + H ₂ (g)	a. Nitride (N ³⁻) b. carbonate
		c. peroxide d. nitrate (NO ₃ -)
Reaction involving m	etal oxide	
2M (s) + O ₂ (g) -	2MO (s)	Q2. Which of the following group 2 compounds when heated
$MO(s) + H_2O(l)$	M(OH)2 (aq)	would produce a coloured gas?
		a. hydroxide b. carbonate
Reaction involving m	etal peroxide (O ₂ ²⁻)	c. peroxide d. nitrate
$M(s) + O_2(g)$ –	MO ₂ (s)	
MO ₂ (s) + 2H ₂ O (l)	M(OH) ₂ (aq/s) + H ₂ O ₂ (ad	Q3 Which of the following group 2 compounds when
MO ₂ (s) + 2H ⁺ (aq)	$M^{2+}(aq) + H_2O_2(aq)$	thermally decomposed would not produce a basic oxide?
		a. Beryllium nydroxide b. magnesium carbonate
Reaction involving m	etal nitride	c. Barium peroxide d. calcium hydroxide
3M (s) + N ₂ (g) -	M ₃ N ₂ (s)	O4 Which of the following group 2 compounds when
M ₃ N ₂ (s) + 3H ₂ O (l) –	3MO (s) + 2NH ₃ (g)	thermally decomposed produce greater number of moles of
M ₃ N ₂ (s) + 6H ₂ O (l)	3M(OH) ₂ (aq/s) + 2NH ₃ (g	g) gases when compared to itself?
		a. Hydroxide b. Carbonate
Thermal decomposit	on reactions	c. Peroxide d. Nitrate (1mol: 2.5 moles
M(OH) ₂ (s) -	MO (s) + H ₂ O (l)	(1mol: ½ mol of gas) of gases)
MCO ₃ (s) –	$MO(s) + CO_2(g)$	in uninsolt
2M(NO ₃) ₂ (s) -	$2MO(s) + 4NO_2(g) + O_2$	(g) Q5. Which of the following magnesium compounds when
MO ₂ (s) —	MO (s) + ½ O ₂ (g)	thermally decomposed produce a basic oxide and an acidic
		oxide? Neutral oxides: CO, H ₂ O, NO, N ₂ O
		(1) Nitrate
		(2) Carbonate
		(3) Hydroxide

All metal oxides are basic oxides except Pb, Zn, Al oxides are amphoteric.

Down group 2 hydroxide, solubility increases and ΔH_{sol} **becomes more exothermic/-ve** r+ \downarrow , ΔH_{hyd} & ΔH_{LE} less exo [due to the square factor, the lattice enthalpy decreases faster than the hydration enthalpy]

Final Revision Exercise

Q1.							
a.	Rank the thermal decomposition temperature on the following compounds: Li ₂ O ₂ , CaO ₂ and BaO ₂ . (Hint: remember the diagonal relationship between Li and Mg) Briefly explain the trend.						
					[4]		
b.	Given 10 gram of ea decomposed. Briefly	ach compound, which explain vour answer.	of them would have the	e largest decrease in mass when ther	mally		
					[2]		
C.	Given 3 metals: Mg, 0	Ca and Ba, describe th	e laboratory tests that ca	n be conducted to identify the metals.			
					[4]		
d.	Suggest an explanation	on for an unusually lov	v melting point for magnes	sium by interpreting the data provided be	elow.		
		Melting point /K	Atomic size / 10 ⁻¹⁰ m	resisitivity / mΩ cm			
	Be	1560	1.40	4.0			
	Mg	923	1.72	4.4			
	Ca	1115	2.23	3.4			
					[2]		

Believe in yourself

a. (H (H •	ank the thermal decomposition temperature on the following compounds: Li ₂ O ₂ , CaO ₂ and BaO ₂ . int: remember the diagonal relationship between Li and Mg) Briefly explain the trend. Higher charge density of cation: $Mg^{2+}>Ca^{2+}>Ba^{2+}$ Higher polarizing ability Charge density of Li ⁺ is comparable to Mg^{2+} (diagonal relationship) Distort the large electron cloud of peroxide resulting in unstable peroxide In terms of thermal stability: $Li_2O_2 < CaO_2 < BaO_2$ In terms of decomposition temperature: $BaO_2 > CaO_2 > Li_2O_2$ [4]
b. Gi de • • • Sk ag Ma	ven 10 gram of each compound, which of them would have the largest decrease in mass when thermally composed. Briefly explain your answer. Larger Mr, fewer moles; less amount of oxygen produced Li ₂ O ₂ \rightarrow Li ₂ O + ¹ / ₂ O ₂ ; MO ₂ \rightarrow MO + ¹ / ₂ O ₂ In terms of Mr: Li ₂ O ₂ < CaO ₂ $<$ BaO ₂ number of moles of oxygen released: Li ₂ O ₂ > CaO ₂ $>$ BaO ₂ decrease in mass of 10g sample: Li ₂ O ₂ (largest decrease) > CaO ₂ $>$ BaO ₂ setch the graph to reflect the change in mass of the solid peroxide jainst time during thermal decomposition.
c. Gi	ven 3 metals: Mg, Ca and Ba, describe the laboratory tests that can be conducted to identify the metals.

	 Add water No/poor: efferveso Gradually add mo White precipitate/p Or Add dilute nitric ad Separate each mi To each sample of 	cence – Mg; Vigorous eff re water and observed w boor solubility – Ca(OH) ₂ cid xture solution into 2 sam	fervescence – Ca or Ba which dissolve b; Colourless solution – ples	Ba(OH)2	
	Add in excess Aq NaOH Aq ammonia knowledge	Mg2+Ca2+White pptWhite pptWhite pptNo pptMg(OH)2Ca(OH)2highlysparinglyinsolublesoluble	Ba ²⁺ No ppt No ppt 2 - Ba(OH) ₂ - y completely soluble		5
d.	Suggest an explanati	on for an unusually low r	nelting point for magnes	sium by interpreting the	[4] data provided below.
		Melting point /K	Atomic size / 10 ⁻¹⁰ m	resisitivity / $m\Omega$ cm	
	Be	1560	1.40	4.0	
	Mg	923	1.72	4.4	
	Ca	1115	2.23	3.4	
	 High resistivity – p Weaker metallic b since lower densit 	boor delocalisation of valu ond than usual y of delocalised electron	ence electrons in Mg s are available	inser	[2]

Q2.

a.	On the same formation for and relevant	enthalpy level diagram, draw the ent Ca ²⁺ (g) and Sr ²⁺ (g) using the data gi data sheet values.	halpies of ven below	
	Element	Enthalpy of atomization		
	Ca	178		
	Sr		ABI	
				[2]
b.	Compare and	l explain the magnitudes of enthalpie	s of formation of CaO and MgO	. [6]
С.	Thermal deco of the followin enthalpy of fo	omposition of carbonate is an endoth g has a higher enthalpy of decompos rmation of BaO is –548 kJmol ⁻¹ and	ermic reaction. Explain with use ition of 1mole of BaCO ₃ or 1 mol MgO is –601kJmol ⁻¹ . Explain yo	e of an energy level diagram which e of MgCO ₃ given that the standard ur answer in details.
				[4]
d.	The table bel	ow gives some information about the	e solubility of Group 2 sulfates.	Construct a relevant energy cycle
	and suggest	/alues for X and Y.	Lattice energy (k Imal-1	hudrotion energy / k l mel-1
	0-00			Hydration energy / kJ mol
		4.6 ×10 ⁻²	-2480	-1650
	SrSO4	7.1 × 104	-2484	X = -1600
		9.4 × 10 ⁻ °	-2374	Y = -1450
				[4]

Q2.

Q3. The table below gives some information regarding the solubility of lead(II) halides.

	Colour	Ksp
Pbl ₂	Yellow	9.8 x 10 ⁻⁹
PbBr ₂	White	6.6 x 10 ⁻⁶
PbCl ₂	White	1.7 x 10 ⁻⁵

a.	Write an expression of the Ksp for dissolution of lead(II) halides. Represent halogen with "X". [1]
b.	Which of the lead(II) halides, PbX ₂ , is the most soluble in water?
	Calculate its solubility in (1) 1dm ³ of distilled water (2) 50cm ³ of 0.10moldm ⁻³ of BaX ₂ (aq)/barium halide solution.
	[5]
C.	If there is a mixture of equimolar concentration of I ⁻ and CI ⁻ present in a solution, state and explain the observations
	when small amount of solid lead(II) nitrate granules are being gradually dissolved in the solution. [2]
d.	Explain the observations made by a student in the school laboratory.
	"When concentrated aq HCI is being gradually being added to an aqueous solution of lead(II) nitrate solution, white
	precipitate that is initially formed dissolved to form a colourless solution. " [2]

a.	Write an expression of the Ksp for dissolution of lead(II) halides. Represent halogen with "X".
	$PbX_2(s) \Leftrightarrow Pb^{2+}(aq)+ 2X^-(aq); Ksp = [Pb^{2+}][X-]^2$
	[1]
b.	Which of the lead(II) halides, PbX ₂ , is the most soluble in water?
	Calculate its solubility in (1) 1dm ³ of distilled water. (2) 50cm ³ of 0.10moldm ⁻³ of BaX ₂ (aq)/barium halide solution.
	(1) $PbX_2(s) \Leftrightarrow Pb^{2+}(aq) + 2X^{-}(aq)$
	x x 2x
	Larger Ksp most soluble is PbCl ₂ , Ksp = $[Pb^{2+}][X^{-}]^2 = [x][2x]^2 = 4x^3 = 1.7 \times 10^{-5}$; x = 0.0162 moldm ⁻³
	(2) common ion, lower solubility $V_{\text{CP}} = [D_{\text{CP}}^{2+1}]_{2+1}^{2} \times (0.40)^2 = 4.7 \times 40^{-5} (W_{\text{CP}})$
	$KSP = [PD^{2+}][X]^2 = X (0.10)^2 = 1.7 \times 10^{\circ} (VRONG)$
	$K_{ep} = [Ph^{2}+][X_{-}]^{2} = y(2y_{\pm}0, 20)^{2} = y(z_{\pm}0, 20)^{2} = 1.7 \times 10^{-5}$
	Assumption: $v < 0.10$; $v = 0.000452$ moldm ⁻³ (assumption validated)
	[5]
C.	If there is a mixture of equimolar concentration of I and CI present in a solution, state and explain the observations
	when small amount of solid lead(II) nitrate granules are being gradually dissolved in the solution.
	Yellow ppt observed
	lower Ksp of Pbl ₂ , lead (II) iodide precipitated first
	Followed by white ppt being produced
	larger Ksp of PbCl ₂ , lead (II) chloride precipitated next
	[2]
d.	Explain the observations made by a student in the school laboratory.
	"When concentrated ad HCI is being gradually being added to an aqueous solution of lead(II) nitrate solution, white
	precipitate that is initially formed dissolved to form a colourless solution. Precipitation: $Ph^{2}t(ag) + 2Ct(ag) \rightarrow PhCl_{2}(g)$
	r(cup(au)), r(b) = (aq) + 2O((aq) - r(b)) = (b) = (b) = (aq) - (b) = (
	[2]
L	[2]

Q4. 10.0 grams of solid barium amide, Ba(NH₂)₂ decomposes when heated to give barium nitride and a pungent gas that turns damp red litmus blue. Upon adding water to barium nitride, more of the pungent gas is produced.

a.	Draw the dot and cross diagram for Ba(NH ₂) ₂ . State the types of chemical bonding present in the compound.
	[3]
b.	(1) Write a balanced equation for the decomposition of barium amide.
	(2) Write a balanced equation for the reaction of barium nitride and excess water.
	(3) Hence calculate the maximum volume of the pungent gas that can be produced given 10.0 grams of solid barium amide.
C.	Suggest the hydrolysis that takes place when barium amide is dissolved in water.
d.	With the aid of the data booklet, arrange the following amides: NaNH ₂ , Mg(NH ₂) ₂ and Ba(NH ₂) ₂ in order of increasing ease of thermal decomposition. Explain your answer.
	[3]

Believe in yourself

a.	Draw the dot and cross diagram for Ba(NH ₂) ₂ . State the types of chemical bonding present in the compound.
	 [Ba 1²⁺: 2 [H-N-H]² (remark: N has a foreign e)
	 Ionic bonds between ions
	 Covalent bonds within complex anion: NH2⁻
	[3]
b.	(1) Write a balanced equation for the decomposition of barium amide.
	$3Ba(NH_2)_2 \rightarrow Ba_3N_2 + 4NH_3$
	(2) Write a balanced equation for the reaction of barium nitride and excess water.
	Excess water: Ba $_{3}N_{2}$ (s) + 6H ₂ O (I) \rightarrow 3 Ba(OH) ₂ (aq) + 2NH ₃ (g)
	Limited water: Ba $_{3}N_{2}$ (s) + $3H_{2}O$ (l) \rightarrow 3 BaO (s) + $2NH_{3}$ (g)
	(3) Hence calculate the maximum volume of the pungent gas that can be produced given 10.0 grams of solid
	Danum amide.
	Ref to equ in (1) number of mole of ammonia produced $-\frac{4}{2} \times 0.0592$ mol
	Ref to equ in (2), number of mole of ammonia produced = $\frac{2}{3} \times 0.0592$ mol
	At rtp, volume of ammonia = $2 \times 0.0592 \text{ mol} \times 24 = 2.84 \text{dm}^3$
	[4]
C.	Suggest the hydrolysis that takes place when barium amide is dissolved in water.
	$Ba(NH_2)_2 + 2H_2O \rightarrow Ba(OH)_2 + 2NH_3$
	$\mathbf{D} = \mathbf{D} = $
d.	With the aid of the data booklet, arrange the following amides: NaNH ₂ , Mg(NH ₂) ₂ and Ba(NH ₂) ₂ in order of increasing
	ease of thermal decomposition. Explain your answer.
	 Ionic radius Ba²⁺ = 0.135nm, Na⁺ = 0.095nm (data booklet)
	• Charge density: $Mg^{2+} > Ba^{2+} > Na^{+}$
	 Ease of thermal decomposition: Mg(NH₂)₂ > Ba(NH₂)₂ > NaNH₂ [3]

Q5.

This question involves the chemistry of 2 group 2 metals and their carbonates found in another planet. Given below are some data of the two metals and their carbonates.

gr	oup 2 metals	E ^θ /V	K _{sp} of carbonates/ mol ² dm ⁻⁶	Decomposition temperature of carbonates / K		
Х		-2.8	1.0 × 10 ⁻⁵	A		
Υ		-3.9	5.0 × 10 ⁻⁵	1630		
a.	Which of the	metal has a smaller p	proton number?			[1]
b.	Which carbor	nate has a higher sol	ubility?			[1]
C.	Is value of A I	larger or smaller thar	n 1630K? Explain you	ir answer.		[2]
d.	Is the lattice e	enthalpy of the carbo	nate of X more or les	s exothermic than Y?	' Explain your answer.	[2]

Believe in yourself

Q5.

This question involves the chemistry of 2 group 2 metals and their carbonates found in another planet. Given below are some data of the two metals and their carbonates.

gro	oup 2 metals	E ^θ /V	K _{sp} of carbonates/ mol ² dm ⁻⁶	Decomposition temperature of carbonates / K		
Х		-2.8	1.0 × 10⁻⁵	A		
Υ		-3.9	5.0 × 10 ⁻⁵	1630		
a.	Which of the X	metal has a smaller p	proton number?			
	More negative	e standard electrode	potential indicates			
	metal Y is mo	ore reactive, lower in	the group			
						[1]
b.	Which carbor	hate has a higher solu	ubility?			
	YCO ₃	nore caluble the calt				
	rigner Ksp, n	nore soluble the sait				[1]
C.	Is value of A	larger or smaller than	1630K? Explain you	ir answer.		
	Smaller than	1630K Napolity of V ²⁺ due tr	a amallar ionia radiua			
	higher polariz	$\frac{1}{2}$ uncertainty of Λ^{-1} due to	ize carbonate			
	carbonate the	ermally less stable/lov	wer decomposition te	mperature	Selt	
				1		[2]
d.	Is the lattice e	enthalpy of the carbo	nate of X more or les	s exothermic than Y	? Explain your answer.	
	Magnitude of	f Lattice Energy ∞ <u>(</u>	<u>Q⁺ Q⁻</u>			
		1	"++r"			
	More exother	mic; X ²⁺ has smaller	ionic radius			101
						[2]

Q6. Barium reacts with oxygen under different conditions to give either barium oxide or barium peroxide (BaO₂).

In an experiment, a mixture of these oxides was treated with an excess of dilute sulfuric acid. 1.63 g of a white solid was precipitated, and a solution of hydrogen peroxide was produced. On the addition of 24.5 cm³ of 0.02 mol dm⁻³ potassium manganate (VII) to the solution, a faint permanent pink was observed.

a.	Write an equation for the reaction of each of the oxides with dilute sulfuric acid.	
		[1]
b.	Name the white solid and calculate the number of moles formed.	
		[2]
C.	Find the number of moles of hydrogen peroxide formed in the solution.	
		[2]
d.	Calculate the masses of the two oxides of barium in the mixture.	
		[2]
e.	Calculate the number of moles of dilute sulfuric acid required to neutralize the mixture of barium oxides.	
		[1]
f.	Calculate the maximum volume of gases that are produced when heated strongly at stp.	
		[1]

Believe in yourself

Q6. Barium reacts with oxygen under different conditions to give either barium oxide or barium peroxide (BaO₂).

In an experiment, a mixture of these oxides was treated with an excess of dilute sulfuric acid. 1.63 g of a white solid was precipitated, and a solution of hydrogen peroxide was produced. On the addition of 24.5 cm³ of 0.02 mol dm⁻³ potassium manganate (VII) to the solution, a faint permanent pink was observed.

a.	Write an equation for the reaction of each of the oxides with dilute sulfuric acid. $BaO + H_2SO_4 \rightarrow BaSO_4 (s) + H_2O$	
	$ \begin{array}{c} x & x \\ BaO_2 + H_2SO_4 \rightarrow BaSO_4 (s) + H_2O_2 \\ y & y & y \end{array} $	[1]
b.	Name the white solid and calculate the number of moles formed. BaSO ₄ ; 0.007 mols (x+y)	[2]
C.	Find the number of moles of hydrogen peroxide formed in the solution. 2 moles of MnO_4^- reacts with 5 moles of H_2O_2 y = 0.001225 mols	
		[2]
d.	Calculate the masses of the two oxides of barium in the mixture. BaO ₂ : $y = 0.001225$ mols; 0.207g BaO: $x = 0.007-0.001225$ mols; 0.884g	
	Kaliana in naunalf	[2]
e.	Calculate the number of moles of dilute sulfuric acid required to neutralize the mixture of barium oxides. 0.007 (x+y)	
		[1]
f.	Calculate the maximum volume of gases that are produced when heated strongly at stp. BaO ₂ \rightarrow BaO + $\frac{1}{2}$ O ₂ (g)	
	volume of oxygen = $0.001225/2 \times 22.4$ mols	
	$= 0.01372 \text{ dm}^3$	[1]

-

Q7. Barium reacts with oxygen under different conditions to give either barium oxide or barium peroxide (BaO₂). Potassium reacts with oxygen to produce superoxide (KO₂). Potassium superoxide dissolves in water to produce hydrogen peroxide, potassium hydroxide and oxygen.

In an experiment, a mixture of these 3 oxides: KO₂, BaO and BaO₂, was treated with 100cm³ of distilled water and a total of 480 cm³ of oxygen is produced at rtp. Thereafter, 2 samples of 25.0cm³ of the mixture solution were extracted and titrated respectively with 25.0 cm³ of 0.480 mol dm⁻³ acidified potassium manganate (VII) to the solution, where a faint permanent pink was observed and 47.5 cm³ of 2.00 mol dm⁻³ of aqueous HCI, where phenolphthalein turns colourless.

a.	 (1) Write an equation for the reaction of each of the oxides with water. (2) Which of the following equation is redox? Explain using oxidation states.
	(=, ····································
b.	Write a balanced equation for the reaction of between acidified potassium manganate(VII) and hydrogen peroxide.
	[3]
C.	Calculate the number of moles of OH- present in the 100cm ³ of mixture solution.
d.	[3] Calculate the number of moles of KO ₂ and hence or otherwise determine the number of moles of BaO and BaO ₂ in
	the mixture of the 3 oxides.
	[3]
	Relians in mountalf
	Deneve in yoursey

Q8. A 0.400g of a mineral AB(CO₃)₂, where A and B are group 2 elements was heated strongly until no further change in mass. A white powder weighing 0.275g was collected and shaken with 0.2dm³ of water. A portion of the white powder remains insoluble and was then filtered. The residue was dried and it weighed 0.057g.

(i) Assuming that the products on heating consist of the oxides of A and B and carbon dioxide, write balanced equation for the thermal decomposition of $AB(CO_3)_2$.

(ii) Calculate the mass of carbon dioxide produced.

(iii) Hence, or otherwise, identify the metals A and B showing your working clearly.

Believe in yourse

Q8. A 0.400g of a mineral AB(CO₃)₂, where A and B are group 2 elements was heated strongly until no further change in mass. A white powder weighing 0.275g was collected and shaken with 0.2dm³ of water. A portion of the white powder remains insoluble and was then filtered. The residue was dried and it weighed 0.057g.

(i) Assuming that the products on heating consist of the oxides of A and B and carbon dioxide, write balanced equation for the thermal decomposition of $AB(CO_3)_2$.

 $AB(CO_3)_2 \rightarrow AO + BO + 2CO_2$

(ii) Calculate the mass of carbon dioxide produced.

Mass of carbon dioxide = 0.400g - 0.275g = 0.125gNumber of mole of carbon dioxide = 0.002841 mol

(iii) Hence, or otherwise, identify the metals A and B showing your working clearly.

Number of mole of AO = BO = $\frac{1}{2} \times 0.002841 = 0.00142$ mol

Mr of $AB(CO_3)_2 = 0.400g / 0.00142 = 281.6$ Ar of A + Ar of B = 161.6 a + b = 161.6 --- Equation (1)

(16+a) 0.00142 + (16+b) 0.00142 = 0.275 a + b = 161.6 --- Equation (1)

Hence A and B are Ba and Mg respectively.