Experimental Data

Q1

Results

Time	Temperature/ °C
0.0	24.3
1.0	24.3
2.0	24.3
3.0	24.3
3.5	22.4
4.0	21.2
5.0	18.0
6.0	14.5
7.0	15.0
8.0	15.6
9.0	16.1
Weigh the capped bottle containing solid FA 1	25.892g
Weigh the capped bottle after emptying	15.030g
solid FA 1	
Mass of FA 1	10.862g

Q2

(a) (i)

CENTRE

(i)	Boliovo in	uninsol	F
final burette	25.00	25.00	
reading / cm ³			
initial burette	0.00	0.00	
reading / cm ³			
volume of FA 3	25.00	25.00	
added / cm ³			

Q3

(a)

	tests	observations with FA 5	observations with FA 6	observations with FA 7	observations with FA 8
1	Add 1 cm depth of FA 4 to a clean test-tube. To this test-tube, add 5 drops of FA 5 followed by 5 drops of FA 3 . Prepare a hot water bath using the hot water provided. Warm the mixture in the water bath for two minutes. Repeat using FA 6 and FA 7, in place of FA 5.	FA 3 solution decolourises [1]	FA 3 solution decolourises [1]	FA 3 solution remain purple and does not decolourise	FA 3 solution decolourises
2	Add 1 cm depth of deionised water to a clean test-tube. To this test-tube, add 5 drops of FA 5 followed by 6 drops of aqueous sodium hydroxide. Add iodine solution, dropwise, until a permanent yellow / orange colour is present. Warm the mixture in the water bath for two minutes. Repeat using FA 6, FA 7 and FA 8, in place of FA 5.	No ppt is formed	Pale yellow ppt is formed [1]	Pale yellow ppt is formed [1]	No ppt is formed
	tests	observations with	observations with	observations with	observations with
3	Add 1 cm depth of Fehling's solution A to a clean test-tube. Then add Fehling's solution B, dropwise, until the initial precipitate just dissolves to give a deep blue solution.	Red brown ppt is formed [1]	No ppt is formed	No ppt is formed	No ppt is formed

Add 5 drops of FA 5.

Warm the mixture in the water bath for five minutes.

Repeat using FA 6, FA 7 and FA 8, in place of FA 5.

[6]

Answers

Q1

Results

Time	Temperature/ °C
0.0	24.3
1.0	24.3
2.0	24.3
3.0	24.3
3.5	22.4
4.0	21.2
5.0	18.0
6.0	14.5
7.0	15.0
8.0	15.6
9.0	16.1
Weigh the capped bottle containing solid	25.892g
Weigh the capped bottle after emptying	15.030g
solid FA 1	
Mass of FA 1	10.862g

CENTRE Believe in younself

Q2

(a)

(i)

final burette	25.00	25.00	
reading / cm ³			
initial burette	0.00	0.00	
reading / cm ³			
volume of FA 3	25.00	25.00	
added / cm ³			

(ii)

```
volume of FA 3 = 25.00 cm<sup>3</sup>
(b)
(i)
No of mol of MnO_4^{-} = 25.00/1000 \times 0.0200 \text{ mol } dm^{-3} = 5.00 \times 10^{-4} \text{ mol}
In 25.0cm<sup>3</sup> of diluted Q,
No of mol of C_2O_4^{2-} = 5.00 x 10<sup>-4</sup> mol x \frac{5}{2} = 1.25 x 10<sup>-3</sup> mol
(ii)
In 250cm<sup>3</sup> of diluted Q,
No of mol of C_2O_4^{2-} = 1.25 x 10<sup>-3</sup> mol x 250/25 = 1.25 x 10<sup>-2</sup> mol
[C<sub>2</sub>O<sub>4</sub><sup>2-</sup>]= 1.25 x 10<sup>-2</sup> mol ÷ 35.70/1000 = 0.35014 = 0.350 moldm<sup>-3</sup>
(iii)
Mr = 64.5 g = 184.212
     0.35014
(iv)
2 (Ar of X) + 2 x 12.0 + 4 x 16.0 + 18 = 184.212 \rightarrow Ar of X = 39.106
X is K
                                       ieve in noui
(c)
\Delta V = 0.4\% \times 22.40 = 0.0896 = 0.09
V = 22.40 \pm 0.09 (range from 22.31-22.49)
Student result is not accurate within the ±0.4% since 22.20 < 22.31
(d)
(i)
Mass of X_2C_2O_4. H_2O = 184.2
Mass of X<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.H<sub>2</sub>O = 0.250 x 0.05 x Mr = 2.3025 = 2.30g
(ii)
 Expected volume
                             Use 25.0 cm<sup>3</sup> of X_2C_2O_2 solution to generate CO<sub>2</sub>
 of gas collected
                             No of mol of C_2O_4^{2-} = 0.0250 \times 0.05 = 1.25 \times 10^{-3} \text{ mol}
                             No of mol of CO_2 = 1.25 \times 10^{-3} \mod x 2
 [1]
                             Vol of CO_2 = 1.25 \times 10^{-3} \text{ mol } \times 2 \times 24000 = 60 \text{ cm}^3
                             Weigh the container with solid X<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.H<sub>2</sub>O to ensure it is
 the preparation of
 250.0 cm<sup>3</sup> of
                             2.30g (M2) and use the tare function
```

 0.05 mol dm^{-3} $X_2C_2O_2 \text{ solution}$

[2]	Measure 50cm ³ of deionised water using a measuring cylinder and pour into a 250ml beaker		
	Cytinder and pour into a 250mt beaker.		
	Add all the solid $X_2C_2O_4$. H_2O into beaker and stir to dissolve.		
	Pour solution in beaker into volumetric flask and add		
	deionised water till its total volume is 250cm ³		
Reaction	Ensure FA 3 is in excess:		
[1]	Measure 50cm³ of KMnO₄ in a measuring cylinder		
	Ensure FA 4 is in excess		
	Measure 10cm ³ of H ₂ SO ₄ in another measuring cylinder		
	Pour both into a conical flask.		
Procedure &	Pipette 25.0cm ³ of aq $X_2C_2O_4$ and add into the same conical		
apparatus	flask with FA3 and FA4.		
[2]			
	Stopper the conical flask with delivery tube to 100ml gas		
	syringe attached to retort stand to collect CO ₂ .		
	Place the conical flask on a Bunsen burner to gently warm it		
CM	over a wire gauze to speed up reaction.		
Measurement	Measure the volume of CO_2 in gas syringe and when it		
[1]	reaches its maximum value, stop the experiment.		
	Wait for the temperature of the gas to return to room		
	temperature by waiting for at least 30 mins before measuring		
	the Vol of carbon dioxide collected (V) in cm ³		
Identify of X	No of mol of $CO_2 = V/24000$ mol		
[1]	No of mol of C ₂ O ₄ ^{2·} = V/24000 x ½ mol		
	In 25cm ³ , Le in Mourset		
	No of mol of X ₂ C ₂ O ₄ ²⁻ .H ₂ O = V/24000 x ½ mol		
	In 250cm ³ ,		
	No of mol of $X_2C_2O_4^2$. H_2O , N = V/24000 x $\frac{1}{2}$ x 10 mol		
	$Mr X_2 C_2 O_4^{2-}.H_2 O = \underline{2.30g}$		
	Ν		
	Ar of X can be determined		

(iii)

Gas like carbon dioxide can dissolve in water

Q3

(a)

	tests	observations with FA 5	observations with FA 6	observations with FA 7	observations with FA 8
1	Add 1 cm depth of FA 4 to a clean test-tube. To this test-tube, add 5 drops of FA 5 followed by 5 drops of FA 3 . Prepare a hot water bath using the hot water provided. Warm the mixture in the water bath for two minutes. Repeat using FA 6 and FA 7, in place of FA 5.	FA 3 solution decolourises [1]	FA 3 solution decolourises [1]	FA 3 solution remain purple and does not decolourise	FA 3 solution decolourises
2	Add 1 cm depth of deionised water to a clean test-tube. To this test-tube, add 5 drops of FA 5 followed by 6 drops of aqueous sodium hydroxide. Add iodine solution, dropwise, until a permanent yellow / orange colour is present. Warm the mixture in the water bath for two minutes. Repeat using FA 6, FA 7 and FA 8, in place of FA 5.	No ppt is formed	Pale yellow ppt is formed [1]	Pale yellow ppt is formed [1]	No ppt is formed
	tests	observations with FA 5	observations with FA 6	observations with FA 7	observations with FA 8
3	Add 1 cm depth of Fehling's solution A to a clean test-tube. Then add Fehling's solution B, dropwise, until the initial precipitate just dissolves to give a deep blue solution. Add 5 drops of FA 5 .	Red brown ppt is formed [1]	No ppt is formed	No ppt is formed	No ppt is formed

 Add 5 drops of FA 5.

 Warm the mixture in the water bath for five minutes.

 Repeat using FA 6, FA 7 and FA 8, in place of FA 5.

[6]

(b)		
	Identity	Evidence
FA5	CH ₃ CH ₂ CHO	Test 3 is a confirmation test for aldehyde / tested +ve with Fehling's solution
FA6	CH₃CH(OH)CH₃	Test 1 confirms the absence of 1 °/2° alcohol group Test 2 is a confirmation test for CH ₃ CH(OH)- / tested +ve with iodoform reagent
FA7	CH₃ CO CH₃	Test 1 confirms the absence of 1 °/2° alcohol group & 3C is unable to form tertiary alcohol Test 3 is a confirmation test for CH ₃ CO / tested +ve with iodoform reagent
FA8	CH₃CH₂CH₂OH	Test 1 confirms the absence of 1 °/2° alcohol group

	Given that FA6 is secondary alcohol, the only other possible structure for 3C alcohol is secondary
	alcohol

(c) CH_3CH_2COOH (Mr = 29+45)

pg. 8 / SmartLab Education Centre