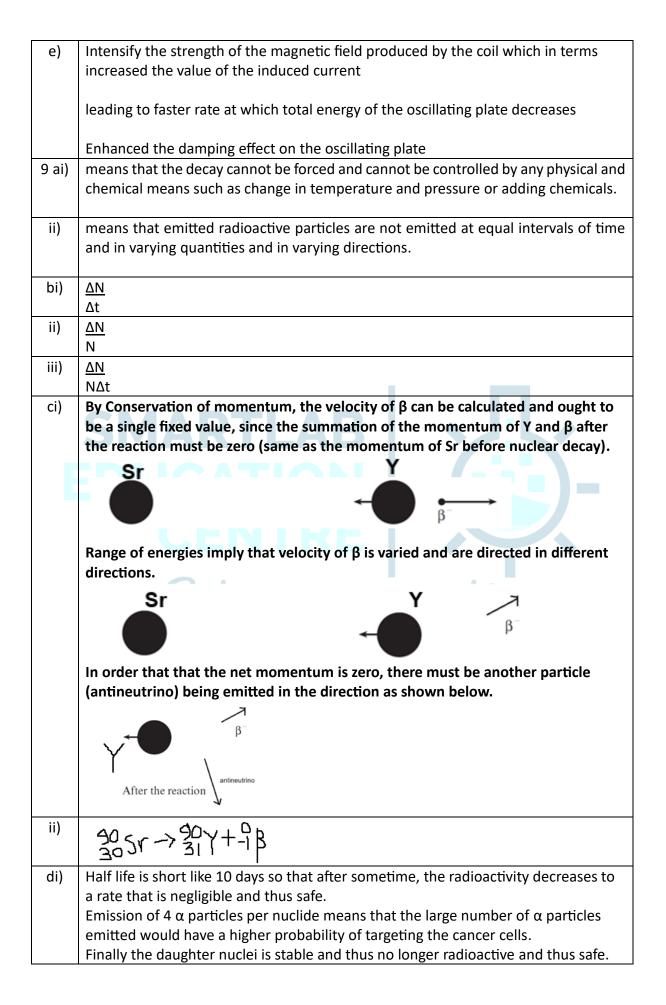
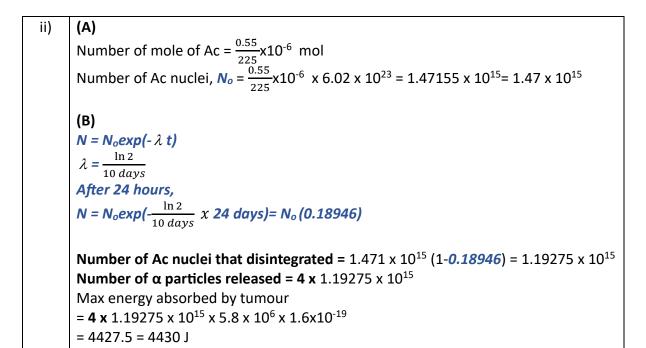

2026 A level H2 Phy Sample P3 Ans





	Difference: trajectory of stone B is a curve while A is vertical line
	Stone B is throw further away horizontally from the point of launch as opposed to A which falls vertically
3 a)	 In reality, all molecules will be moving in three dimensions equally Splitting the velocity into its components c_x, c_y and c_z to denote the amount in the x, y and z directions, c² can be defined using pythagoras' theorem in 3D: c² = c_x² + c_y² + c_z²
	 Since there is nothing special about any particular direction, it can be determined that: <c<sub>x²> = <c<sub>y²> = <c<sub>z²></c<sub></c<sub></c<sub>
	• Therefore, $$ can be defined as:
	$< c_x^2 > = \frac{1}{3} < c^2 >$
	$pV = \frac{1}{3}Nm < c^2 >$
bi)	Nm = mass of the gas = $20.2 \text{ g} = 20.2 \text{ x} 10^{-3} \text{ kg}$
	$P = 1.01 \times 10^5 Pa$
	$V = 2.24 \times 10^4 \text{ cm}^3 = 2.24 \times 10^4 \times 10^{-6} \text{ m}^3$
	T = 273 K Crms = 579.66 = 580m/s
ii)	T = 273.15 + 27.0 = 300.15 K
,	$pV = \frac{1}{3}Nm < c^2 > \& pV = NkT$
	$^{1}/_{3}$ m <579.66 ² > = k(273)
	$1/3 \text{ m} < c'^2 > = k(300.15)$
	c' _{rms} = 607.796 = 608m/s
4 a)	Capacitance is defined as the charge stored per unit potential difference . Capacitance is a means of quantifying the charge storing ability of a conductor.
bi)	charging a capacitor $Q = Q_0 \left[1 - e^{-\frac{t}{r}} \right]$
	RC time constant $\tau = RC$
	$\tau = RC = 50 \Omega \times 120 \times 10^{-6} F$
	$Q = 0.95 Q_0 \rightarrow 0.95 = (1 - e^{-t/RC})$
	$e^{-t/RC} = 0.05$ - t/RC = ln 0.05 \rightarrow t = 0.017974 = 0.0180 s
ii)	$Q_o = CV_{max} = 120 \times 10^{-6} F \times 240 V = 0.0288C$
,	$Q_0 = CV_{max} = 120 \times 10^{-1} \times 240^{-1} = 0.0288C$ $Q = 0.95Q_0$
	$E = \frac{1}{2}Q^{2}/C = 3.119 = 3.12 J$
5 ai)	Single slit
	1 st minima
	$\sin \theta_1 = \underline{n \lambda} = (\underline{1}) (\underline{590 \times 10^{-9}}) \rightarrow \theta_1 = 0.169^{\circ}$
::)	$\frac{d}{dt} = 0.20 \times 10^{-3}$
ii)	sin θ ₁ = <u>n λ</u> = (2) (590x10 ⁻⁹) → θ ₁ = 0.338 ° d 0.20x10 ⁻³
b)	Width = 2 x D x tan θ_1 = 2 x 0.75m x tan 0.169 ° = 4.4250 x 10 ⁻³ = 4.43 x 10 ⁻³ m
c)	1
	$\theta \approx \frac{\lambda}{b}$ for the resolving power of a single aperture

