2026 H1 Chem Sample P1 Ans

1.	Ans: C								
	Covalent – sharing valence electrons								
2.	Ans: C								
	Mass = $1.673 \times 10^{-27} \times 28 + 1.675 \times 10^{-27} \times 34 + 2 \times 9.109 \times 10^{-31}$								
3.	Ans: A								
4.	Ans: B								
	Bond angle is 109° as hydrogen bond is considered as a bond pair								
5.	Ans: B								
	Oxidation of sulfur is -2 in Sb_2S_3 and +4 in SO_2								
	Oxidation of chlorine is +7 in KClO ₃ and -1 in KCl								
6.	Ans: C								
	Major increase in IE is from 7000 to 13,200 as electrons are being removed from								
	the inner quantum shell which has lower shielding effect								
	Group number of element is 16								
/.	Ans: D								
	Ч								
	$H''' \geq c''$								
	DUGATION								
8.									
	BE (C-C) < BE (C=C)								
0									
5.	All non polar covalent molecules. Larger the number of electrons better the ability								
	to polarize the molecule leading to stronger instantaneous dipole induced dipole								
	attraction forces								
10.	Ans: A								
	ור								
	\ / ` วโ_								
	нс—с—с-1 2								
	0 0								
11.	Ans: A								
11.	Ans: A Higher the pressure, closer the molecules to bring about substantial intermolecular								

Higher pressure is required for butane which has weaker instantaneous dipole induced dipole as it is more cylindrical with larger molecular area to polarize its molecule relative to 2-methylpropane (which has the same number of electrons as butane)12. Ans: D NH ₃ + HCI \rightarrow NH ₄ CI (NH ₄ * & CI) BL <b< th=""><th></th><th>Higher pressure is like propane whic induced dipole) re</th><th>required f h has fewe lative to 2</th><th>or mo r num -meth</th><th>blecules t ber of el</th><th>hat hav ectrons ie and b</th><th>e weaker i (weaker i outane.</th><th>intermolecular forces nstantaneous dipole</th></b<>		Higher pressure is like propane whic induced dipole) re	required f h has fewe lative to 2	or mo r num -meth	blecules t ber of el	hat hav ectrons ie and b	e weaker i (weaker i outane.	intermolecular forces nstantaneous dipole		
12. Ans: D NH ₃ + HCl → NH ₄ Cl (NH ₄ * & Cl') BL BL BL 13. Ans: D Weak acid or base as reaction does not occur in aqueous solution. 13. Ans: D Weak acid required to produce buffer with strong base: CH ₃ COOH & CH ₃ COO- Amount of Weak acid CH ₅ COOH would be neutralised only forming CH ₃ COO- (which is not a buffer solution) 14. Ans: A bromocresol-green is blue → pH > 5.5 phenol-red is yellow → pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H* which is neutralised by carbonate HCO ₃ * + OH → CO ₃ ² + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C Mas: C Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C Mas: A Not related to ionisation energy which focus on the ability for the element to lose electrons 18. Ans: B		Higher pressure is required for butane which has weaker instantaneous dipole induced dipole as it is more cylindrical with larger molecular area to polarize its molecule relative to 2-methylpropane (which has the same number of electrons as								
12. Ans: A NH + HCl → NH ₄ Cl (NH ₄ * & Cl) BL BL BL <t< th=""><th>10</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	10									
BL BL BL BL BL BL means Bonsted-Lowry Base Acid Not Arrhenius acid or base as reaction does not occur in aqueous solution. 13. Ans: D Weak acid required to produce buffer with strong base: CH ₃ COOH & CH ₃ COO- Amount of Weak acid > Amount of strong base In Option A, all the weak acid CH ₃ COOH would be neutralised only forming CH ₃ COO- (which is not a buffer solution) 14. Ans: A bromocresol-green is blue \Rightarrow pH > 5.5 phenol-red is yellow \Rightarrow pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H* which is neutralised by carbonate HCO ₃ * + OH \Rightarrow CO ₃ ² + H ₂ O Add OH- HCO ₃ * + OH \Rightarrow CO ₃ ² + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C 17. Ans: C 17. Ans: C 18. Ans: B	12.									
Base Acid Not Arrhenius acid or base as reaction does not occur in aqueous solution. 13. Ans: D Weak acid required to produce buffer with strong base: CH ₃ COOH & CH ₃ COO- Amount of Weak acid > Amount of strong base In Option A, all the weak acid CH ₃ COOH would be neutralised only forming CH ₃ COO- (which is not a buffer solution) 14. Ans: A bromocresol-green is blue → pH > 5.5 phenol-red is yellow → pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H* which is neutralised by carbonate HCO ₃ ⁻ + OH → CO ₃ ² + H ₂ O Add OH- CO ₃ ² + H ₃ O ⁺ → HCO ₃ ⁻ + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C 16. Ans: C 17. Ans: C 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C 18. Ans: B 18. Ans: B		RI RI	Z INII4CI (INII4 & CI) RI moons Ronstod-Lowry							
Not Arrhenius acid or base as reaction does not occur in aqueous solution. 13. Ans: D Weak acid required to produce buffer with strong base: CH ₃ COOH & CH ₃ COO- Amount of Weak acid CH ₃ COOH would be neutralised only forming CH ₃ COO- (which is not a buffer solution) 14. Ans: A bromocresol-green is blue \Rightarrow pH > 5.5 phenol-red is yellow \Rightarrow pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H* which is neutralised by carbonate HCO ₃ * + OH* \Rightarrow CO ₃ ² + H ₂ O Add OH- HCO ₃ * + OH* \Rightarrow CO ₃ ² + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C Image constant Not 0.100 Mage constant Not Not negle constant Not Not Not 17. Ans: C Image constant Not Not Not Not Not 18. Ans: B		Base Acid			DE III			' y		
13. Ans: D Weak acid required to produce buffer with strong base: CH ₃ COOH & CH ₃ COO-Amount of Weak acid > Amount of strong base In Option A, all the weak acid CH ₃ COOH would be neutralised only forming CH ₃ COO- (which is not a buffer solution) 14. Ans: A bromocresol-green is blue \rightarrow pH > 5.5 phenol-red is yellow \rightarrow pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H* which is neutralised by carbonate HCO ₃ * + OH \rightarrow CO ₃ ² + H ₂ O Add OH- Acid CO ₃ ² + H ₃ O* \rightarrow HCO ₃ * + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C Image constant Not related to ionis ion energy which focus on the ability for the element to lose electrons 17. Ans: C Image constant Not related to ionis ation energy which focus on the ability for the element to lose electrons 17. Ans: C Image constant Not related to ionis ation energy by constant Image constant Not related to ionis ation energy by constant Image constant Not related to ionis ation energy by constant Image constant Not related to ionis ation energy by constant Image constant Not related to ionis ation energy by constant Image constant Not relate to ionis ation energy by constant		Not Arrhenius aci	d or base a	is read	tion doe	s not or	cur in an	ieous solution		
Institution of the set of	13.	Ans: D		io reac		<u> </u>				
Amount of Weak acid > Amount of strong base In Option A, all the weak acid CH ₃ COOH would be neutralised only forming CH ₃ COO- (which is not a buffer solution) 14. Ans: A bromocresol-green is blue \rightarrow pH > 5.5 phenol-red is yellow \rightarrow pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H ⁺ which is neutralised by carbonate HCO ₃ ⁻ + OH \rightarrow CO ₃ ² + H ₂ O Add OH- CO ₃ ² + H ₃ O ⁺ \rightarrow HCO ₃ ⁻ + H ₂ O Add OH- CO ₃ ² + H ₃ O ⁺ \rightarrow HCO ₃ ⁻ + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C 17. Ans: C 17. Ans: C 18. Ans: B 18. Ans: B		Weak acid required to produce buffer with strong base: CH2COOH & CH2COO-								
In Option A, all the weak acid CH ₃ COOH would be neutralised only forming CH ₃ COO- (which is not a buffer solution) 14. Ans: A bromocresol-green is blue \Rightarrow pH > 5.5 phenol-red is yellow \Rightarrow pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H ⁺ which is neutralised by carbonate HCO ₃ ⁻ + OH \Rightarrow CO ₃ ² + H ₂ O Add OH- CO ₃ ² + H ₃ O \Rightarrow HCO ₃ ⁻ + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C 17. Ans: C 18. Ans: B 18. Ans: B		Amount of Weak acid > Amount of strong base								
CH ₃ COO- (which is not a buffer solution) 14. Ans: A bromocresol-green is blue \rightarrow pH > 5.5 phenol-red is yellow \rightarrow pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H* which is neutralised by carbonate HCO ₃ * + OH \rightarrow CO ₃ ² + H ₂ O Add OH- HCO ₃ * + OH \rightarrow CO ₃ ² + H ₂ O Add OH- HCO ₃ * + OH \rightarrow CO ₃ * + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C Imathic Ma 0.160 Ma ⁿ 0.005 Imathic aingle covalent Si 0.117 Si* 0.041 P* 0.102 S*- 18. Ans: B		In Option A, all the weak acid CH_3COOH would be neutralised only forming								
14. Ans: A bromocresol-green is blue \rightarrow pH > 5.5 phenol-red is yellow \rightarrow pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H ⁺ which is neutralised by carbonate HCO ₃ ⁻ + OH \rightarrow CO ₃ ² + H ₂ O Add OH- HCO ₃ ⁻ + OH \rightarrow CO ₃ ² + H ₂ O Add OH- HCO ₃ ⁻ + H ₃ O ⁺ \rightarrow HCO ₃ ⁻ + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C Image: Constant Si = 0.117 Si = 0.116 Mg = 0.106 Mg ² = 0.085 aingle covalent Si = 0.117 Si = 0.117 Si = 0.104 S ² = 0.184 c: c: 0.099 c: c: 0.181		CH_3COO- (which is not a buffer solution)								
bromocresol-green is blue \rightarrow pH > 5.5 phenol-red is yellow \rightarrow pH < 6.8 15. Ans: D Carbon dioxide is acidic releasing H* which is neutralised by carbonate HCO ₃ * + OH \rightarrow CO ₃ ² + H ₂ O Add OH- Add OH- CO ₃ ² + OH \rightarrow CO ₃ ² + H ₂ O Add OH- Acid CO ₃ ² + H ₃ O ⁺ \rightarrow HCO ₃ * + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C 17. Ans: C 17. Ans: C 17. Ans: C 18. Ans: B	14.	Ans: A								
phenol-red is yellow → pH < 6.8		bromocresol-green is blue \rightarrow pH > 5.5								
15. Ans: D Carbon dioxide is acidic releasing H ⁺ which is neutralised by carbonate $HCO_3^- + OH^- \rightarrow CO_3^{2^-} + H_2O$ Add $OH^- \rightarrow HCO_3^- + OH^- \rightarrow CO_3^{2^-} + H_2O$ 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C 17. Ans: C 17. Ans: C 18. Ans: B		phenol-red is yell	ow → pH <	6.8						
Carbon dioxide is acidic releasing H ⁺ which is neutralised by carbonate $HCO_{3^{-}} + OH \rightarrow CO_{3^{2^{-}}} + H_{2}O$ $Add OH - HCO_{3^{-}} - Add H+$ $CO_{3^{2^{-}}} + H_{3}O^{+} \rightarrow HCO_{3^{-}} + H_{2}O$ 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C $\boxed{\frac{9 \text{ Period 3}}{\frac{100}{100} \frac{100}{100} \frac{100}{$	15.	Ans: D								
HCO ₃ ⁻ + OH \rightarrow CO ₃ ²⁻ + H ₂ O Add OH- HCO ₃ ⁻ - OG ²⁻ + H ₃ O ⁺ - HCO ₃ ⁻ + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C 17. Ans: C 18. Ans: B		Carbon dioxide is	acidic relea	asing	H⁺ which	is neut	ralised by	carbonate		
16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C $\frac{(2 - Pri/cd 3)}{metallic} \frac{M_8}{M_2} \frac{0.085}{0.065} \frac{M_8^2}{0.085} \frac{0.085}{0.085} \frac{M_8^2}{0.085} \frac{0.041}{M_2} \frac{M_8^2}{0.085} \frac{M_8^2}{M_2} \frac{M_8^2}{0.085} \frac{M_8^2}{M_2} M$			HCO ₃ -	+ OH	→ CO _{3²⁻}	+ H2O				
16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C $\frac{(\circ) Period 3}{metallic} \frac{Na}{Ng} \frac{0.166}{Ng^2} \frac{Na^2}{0.065} \frac{0.095}{Ng^2} \frac{Na}{0.065} \frac{Na}{Ng} \frac{1}{N} \frac{1}{Ng} \frac{1}$										
Add OH-HCO3'CO3''Add H+Acid $CO3^2 + H_3O^+ \Rightarrow HCO3^- + H_2O$ 16.Ans: ANot related to ionisation energy which focus on the ability for the element to lose electrons17.Ans: C $\frac{(o) Period 3}{metallic}$ $\frac{Mg}{Mg}$ $\frac{100}{Mg}$ $\frac{Mg}{Mg}$ $\frac{110}{Mg}$			/	0						
Add OH- HCO ₃ Acid CO ₃ ²⁻ + H ₃ O ⁺ \rightarrow HCO ₃ ⁻ + H ₂ O 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C $\frac{(\circ) \frac{Period 3}{ metallic } Mg 0.160 Mg^{2+} 0.065 metallic }{Mg 0.160 Mg^{2+} 0.065 metallic } metallic Mg 0.160 Mg^{2+} 0.065 metallic }{ metallic } metallic Mg 0.160 Mg^{2+} 0.065 metallic } metallic Mg 0.160 Mg^{2+} 0.065 metallic } metallic Mg 0.160 Mg^{2+} 0.065 metallic } metallic Mg 0.160 Mg^{2+} 0.065 metallic Mg 0.160 me$			(
Add OH- Acid $CO_3^{2^2} + H_3O^+ \rightarrow HCO_3^- + H_2O$ 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C $\boxed{(2 Period 3)}{metallic} Mg 0.160 Mg^{2^2} 0.065 Mg^{$			HCO) 📹	C	0,2-		4.		
Acid $CO_3^{2^2} + H_3O^+ \rightarrow HCO_3^- + H_2O$ 16.Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons17.Ans: C17.For ionization is a constrained in the ionization is a cons		Add UH-	1003	/			A Add I			
16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C $ \frac{(\circ) Period 3}{metallic} Na 0.186 Na^{\circ} 0.095 metallic}{Mg 0.160 Mg^{2\circ} 0.065 metallic}{Mg 0.160 Mg^{2\circ} 0.065 metallic}{Mg 0.117 Si^{4\circ} 0.050 metallic}{Mg 0.110 metallic}{Mg 0.100 Mg^{2\circ} 0.0212 metallic}{Mg 0.100 metallic}{Mg $		Acid	•		0	/				
16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C $ \begin{array}{r} (\circ) \ Period 3 \\ \hline metallic \\ \hline Mg \\ 0.160 \\ \hline Mg^{2*} \\ 0.065 \\ \hline Mg \\ 0.160 \\ \hline Mg^{2*} \\ 0.050 \\ \hline \\ \hline metallic \\ \hline Mg \\ 0.117 \\ \hline Si \\ 0.117 \\ Si^{4*} \\ 0.041 \\ \hline \\ \hline \\ 9 \\ \hline \\ 0.110 \\ \hline \\ Single covalent \\ \hline \\ Si \\ 0.114 \\ \hline \\ Single \\ \hline \\ Cl \\ 0.099 \\ \hline \\ \hline \\ Cl \\ \hline \\ 0.18 \\ \hline \end{array} $ 18. Ans: B										
$CO_3^{2^*} + H_3O^* \rightarrow HCO_3^* + H_2O$ 16.Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons17.Ans: C(c)Period 3 metallicMg0.186Mg0.160Mg0.165Mg0.160Mg^{2^*}0.065Image: Single covalentSi0.117Si ^{4*} 0.0212S0.104S ^{2*} 0.18118.Ans: B										
 16. Ans: A Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C (c) Period 3 (d) NB (e) 0.160 (f) Mg (f) 0.160 (f) Mg (f) 0.160 (f) 0.065 (f) 0.117 (f) 0.041 (f) 0.041 (f) 0.011 (f) 0.011		_	CO32- 4	H ₃ O⁺	\rightarrow HCO ₃	• + H ₂ O		_		
Not related to ionisation energy which focus on the ability for the element to lose electrons 17. Ans: C (c) Period 3 (c) Period 3 metallic Na 0.186 Na* 0.095 Mg 0.160 Mg ^{2*} 0.065 0.065 Al 0.143 Al ^{3*} 0.050 0.050 single covalent Si 0.117 Si ^{4*} 0.041 P 0.110 P ³⁻ 0.212 S 0.104 S ²⁻ 0.184 Cl 0.099 Cl ⁻ 0.181	16.	Ans: A								
electrons Ans: C (c) Period 3 a a 0.086 a metallic Na 0.186 Na* 0.095 a Mg 0.160 Mg ²⁺ 0.065 a Al 0.143 Al^{0+} 0.050 a single covalent Si 0.117 Si ⁴⁺ 0.041 P 0.110 P ³⁻ 0.212 0.212 Si 0.117 Si ⁴⁺ 0.041 0.112 Horizontal Si 0.110 P ³⁻ 0.212 Si 0.104 S ²⁻ 0.184 Cl 0.099 Cl ⁻ 0.181		Not related to ion	isation ene	ergy w	hich focu	us on th	e ability fo	or the element to lose		
17. Ans: C (c) Period 3 metallic Mg 0.186 Na* 0.095 Mg 0.160 Mg ²⁺ 0.065 Al 0.143 Al ³⁺ 0.050 single covalent Si 0.117 Si ⁴⁺ 0.041 P 0.110 P ³⁻ 0.212 S 0.104 S ²⁻ 0.184 Cl 0.099 Cl ⁻ 0.181		electrons								
(c) Period 3 understand metallic Na 0.186 Na* 0.095 Mg 0.160 Mg ²⁺ 0.065 0.065 Al 0.143 Al ³⁺ 0.050 0.050 single covalent Si 0.117 Si ⁴⁺ 0.041 P 0.110 P ³⁻ 0.212 S 0.104 S ²⁻ 0.184 Cl 0.099 Cl ⁻ 0.181	17.	Ans: C								
Interain Na 0.160 Na 0.035 Mg 0.160 Mg ²⁺ 0.065 Al 0.143 Al ³⁺ 0.050 single covalent Si 0.117 Si ⁴⁺ 0.041 P 0.110 P ³⁻ 0.212 S 0.104 S ²⁻ 0.184 Cl 0.099 Cl ⁻ 0.181		(c) Period 3	0.196	No ⁺	0.005					
Al 0.143 Al^{3+} 0.050 single covalent Si 0.117 Si^{4+} 0.041 P 0.110 P^{3-} 0.212 S 0.104 S^{2-} 0.184 Cl 0.099 Cl ⁻ 0.181		Mg	0.160	Mg ²⁺	0.065					
single covalent Si 0.117 Si ⁴⁺ 0.041 P 0.110 P ³⁻ 0.212 S 0.104 S ²⁻ 0.184 Cl 0.099 Cl ⁻ 0.181 18. Ans: B 0.000 0.0000		A <i>l</i>	0.143	A <i>l</i> ³⁺	0.050					
single covalent Si 0.117 Si ⁴⁺ 0.041 P 0.110 P ³⁻ 0.212 S 0.104 S ²⁻ 0.184 Cl 0.099 Cl ⁻ 0.181 18. Ans: B S S S										
P 0.110 P 0.212 S 0.104 S ²⁻ 0.184 Cl 0.099 Cl 0.181		single covalent Si	0.117	Si ⁴⁺	0.041	n°-	0.010			
18. Ans: B		P	0.110			P°− S²−	0.212			
18. Ans: B		Cl	0.099			Cl-	0.181			
	18.	Ans: B								

	proportion of molecules energy								
	Statement 2 is correct as there is higher proportion of molecules that have higher								
	energies								
19	Statement 3 is wrong as proportion of molecules for lower energy decreases								
10.	Higher activation energy								
	ΔH < 0								
20.	Ans: C								
	Catalyst does not change the position of equilibrium, yield or Kc.								
21.	Ans: D								
	At low concentration of acid, rate \propto [acid]								
	At high concentration of acid, rate is constant								
22.	 Ans: D N₂ (g) + 3H₂ (g) ⇔ 2NH₃ (g), ∆H = -92kJ/mol Statement 1 is wrong as coating the surface provide a larger surface area to increase the rate of reaction Statement 3 is wrong as product molecules should weakly attracted to the catalytic surface in order that desorption can take place 2CO + 2NO → 2 CO₂ + N₂ (Catalyst:Rh) 2CO + O₂ → 2 CO₂ (Catalyst:Pt, Pd) C_vH_v + (x+v/4) O₂ → xCO₂ + v/2 H₂O (Catalyst:Pt, Pd) 								
23.	Ans: C $N_{2}O_{1}(q) \rightleftharpoons 2NO_{2}(q)$								
	Lower pressure favours more gaseous molecules								
	Higher temperature favours endothermic reaction								
24.	Ans: C								
	$\Delta H^{\Theta} = -88 \text{kJ} \text{mol}^{-1}$								
	$\frac{1}{Z} \chi^{\Delta H^{\Theta} = \frac{+14 \text{ kJ mol}^{-1}}{Z}} \frac{1}{Z} \chi^{\Delta H^{\Theta} = \frac{+14 \text{ kJ mol}^{-1}}{Z}} \frac{1}{Z} \chi^{2} \chi^$								
	$\Delta H = \frac{1}{2} \times 14 + -88$								
25.	Ans: C								

	$CH_{3}CH_{2}SH + 4\frac{1}{2}O_{2} \rightarrow 2CO_{2} + 3H_{2}O + SO_{2}$ $-20 -90 + 40 + 20$ Unused/excess Oxygen gas = 100-90 = 10cm ³							
	CO_2 and SO_2 are both acidic and can be dissolved in alkali Volume of CO_2 and $SO_2 = 60 \text{ cm}^3$							
	Total volume of cooled gas = 60+10 = 70 cm ³							
26.	Ans: C 2 groups of methyl at carbon number 2							
27.	Ans: B							
	n = 3, 2n+2 = 8							
	molecule 2, 3 and 4 are short of 2H/X (halogen) so able to form C=C							
	Molecule 2 displays cis-trans: CH/=CHCH ₃							
	Molecule 3 displays cis-trans: $CH/=C(P_r)CH$							
10								
20.	Alls. D Condensation polymer which has an ester linkage that can undergo acid hydrolysis							
29.	Ans: A							
201	Repeat unit							
E								
30.	Ans: B Interaction forces like hydrogen bonds, instantaneous dipole-induced dipole attraction forces can be overcome by the heating Covalent bonds like peptide linkage would be broken during heating. Hydrolysis does not occur due to heating alone, as acid/alkali is required.							