2026 H1 Chem Sample P2 Ans

	ΔHc = -9560 kJ/mol					
c) 5 ai)	H H H H H C C H H C C C H H C C C H C C C C	H H H H C C H Tran = 23.30/1000	H C H s-2-butene x 1.00 = 0.023	30 mol		
11)	1 mol H ₂ SO ₄ = 2 mol NaOH Number of mol of NaOH = 0.00500 x 2 = 0.01000 mol					
iii)	$CH_3CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$					
iv)	1 mol $CH_3CO_2H \equiv 1$ mol NaOH Number of mol of NaOH reacted with CH_3CO_2H = 0.02330 mol - 0.01000 mol = 0.01330 mol At equilibrium, number of mol of $CH_3CO_2H = 0.01330$ mol					
bi)		CH ₃ CO ₂ H	C ₂ H ₅ OH	CH ₃ CO ₂ C ₂ H ₅	H ₂ O	
	initial amount / mol	0.0200	0.107	0	0.100	
	equilibrium amount / mol	0.01330	0.1003	0.00670	0.10670	
ii)	number of mol of CH ₃ CO ₂ H that reacted to produce ester = $0.0200 - 0.01330$ mol = $0.0200 - 0.01330 = 0.00670$ mol Thus amt of ester produced/water produced = 0.00670 mol Thus amt of ethanol used up = 0.00670 mol Kc = $[CH_3CO_2C_2H_5][H_2O]$ [CH ₂ CO ₂ H][C ₂ H ₅ OH]					
iii)	$Kc = \frac{[CH_3CO_2C_2H_5][H_2O]}{[CH_3CO_2H][C_2H_5OH]} = \frac{(0.00670/V)(0.10670/V)}{(0.01330/V)(0.1003/V)} = 0.53590 = 0.536$ $[CH_3CO_2H][C_2H_5OH] = (0.01330/V)(0.1003/V)$ no unit					
c)	Position of equilibrium shifts forward Adding more reactant favours the removal / decrease of amount of reactant by Le Chatelier's Principle when the added reactant would be converted to product					
6 a)	Compared expt 2 & 3, in expt 2 $[H_2]$ by 4x, rate \uparrow by 4x, wrt to H_2 1 st order Compared expt 1 & 3, in expt 1 $[H_2]$ by 2x, rate \uparrow by 2x, since wrt H_2 1 st order, rate = 12.0 x 10 ⁻³ in expt 2 $[NO] \downarrow$ by ½, rate \downarrow by ¼, wrt to NO 2 nd order					
b)	$R = k [H_2] [NO]^2$					
c)	rate = 2.4 x 10 ⁻² = k [H ₂] [NO] ² = k [0.0040] [0.006] ² k = 166,667 = 167,000 mol ⁻² dm ⁶ h ⁻¹					
7 a)	Na / giant metallic lattice structure / delocalised electrons and cations held in fixed positions / good electrical conductor					

r					
	Si / giant covalent lattice structure / covalent bonds btw Si atoms / few of the				
	shared pair electrons may be able to be delocalised / semi conductor				
	Cl_2 / non polar covalent molecule / absence of ions or electrons for electrical				
	conductivity / poor electrical conductor				
hi)	pH ~ 13				
51)	$Na_2O + H_2O \rightarrow 2 NaOH$				
	pH~1-2				
	$pH \sim 1-2$				
	$SO_3 + H_2O \rightarrow H_2SO_4$				
ii)	Na ₂ O + 2HCl → 2 NaCl + H ₂ O $P_{1}O_{12} + 12 NaOH \rightarrow 4 Na_2P_{0} + 6 H_2O$				
	$P_{4}O_{10} + 12 \text{ NaOH} \rightarrow 4 \text{ Na}_{3}PO_{4} + 6 \text{ H}_{2}O$ $SO_{3} + 2 \text{ NaOH} \rightarrow \text{Na}_{2}SO_{4} + \text{H}_{2}O$				
iii)	Across period, initially metal oxides are basic oxides while subsequently non-metal oxide				
,	are acidic oxides				
ci)	0				
017	ON ∠OH				
	₩ I				
	ö				
	aspirin C _{oHeO4}				
	Mr = 180				
	$\frac{1}{2}$ % tago mass of carbon = $0x12/Mr \times 100 = 60\%$				
;;)	$\frac{1}{100} = \frac{1}{100}$				
- 11)	Functional group CONUL 2300-3000 cm ⁻¹				
)	Functional group CONH: 3300-3500 cm ⁻¹				
<u> </u>	Functional group phenol: 3200-3600 cm ²				
IV)	Acidic/alkaline hydrolysis				
	(due to ester / amide group)				
d)	$CH_2=CH-CH_3 + H_2 \rightarrow CH_3CH_2CH_3$				
	Addition reaction				
	Heat at 140°C, Nickel or Catalyst: Pd, rtp				
8 a)	Cu / giant metallic lattice structure / strong electrostatic attraction forces btw				
	delocalised electrons and cations held in fixed positions				

