2026 H2 Chem Sample P2 Ans

5 a)	 Nuclear charge is larger for Cu as it has larger number of protons (29p as compared to Fe 26p) However it has a fully filled 3d for Cu ([Ar] 3d¹⁰ 4s¹) that provides effective shielding effect on the outermost 4s electrons as compared to Fe which has partially filled 3d The more effective shielding effect cancels out the increased in nuclear charge for Cu resulting in similar atomic radii
b)	 Reason 1: They have giant metallic structures. For transition elements, the <u>3d and 4s electrons are involved in delocalisation</u> in metallic bonding (due to their proximity in energies). For s-block elements, <u>only the s electrons are involved in delocalisation</u> in metallic bonding. Hence, <u>larger amount of energy</u> is required to overcome the <u>stronger electrostatic forces of attraction between the cations and the sea of delocalised electrons in transition elements</u> as compared to s-block elements. Reason 2:
	 Transition elements have <u>smaller atomic/metallic radius</u> and <u>highly charged</u> <u>metal cation</u>. Hence, higher charge density. <u>Larger amount of energy</u> is required to overcome the <u>stronger electrostatic</u> <u>forces of attraction between the cations and the sea of delocalised electrons</u> <u>in transition elements</u> as compared to s–block elements.
6 a)	cis
b)	Octadeca-6,9,12,15-tetraenoic acid
c)	2 ⁵ = 32 cis-trans isomers
d)	Instantaneous dipole-induced dipole attraction forces
ei)	Max energy from fat intake = 25% x 2000 = 500 kcal per day
	Max Mass of fat = 500kcal ÷ 9 kcal = 55.56 = 55 g
ii)	1 egg = 50mg DHA \rightarrow 10 eggs = 500mg DHA per day for good health 1 egg = 5.0g fats \rightarrow 10 eggs = 50g fats < 55g Answer yes it is appropriate
f)	"Omega-3" refers to a fatty acid structure where the first double bond in the
-')	carbon chain is located three carbon atoms from the methyl end of the molecule, essentially meaning the unsaturated bond is positioned at the "third carbon from the tail" of the fatty acid chain; this is why it's called "omega-3" as "omega" represents the end of the chain.
gı)	$R \xrightarrow{O} R \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O}$
ii)	Reaction rate is fast since diazomethane or CH ₂ ⁻ is a base while COOH is an acid &
	reaction is spontaneous as neutralisation takes place
	· · · · ·

