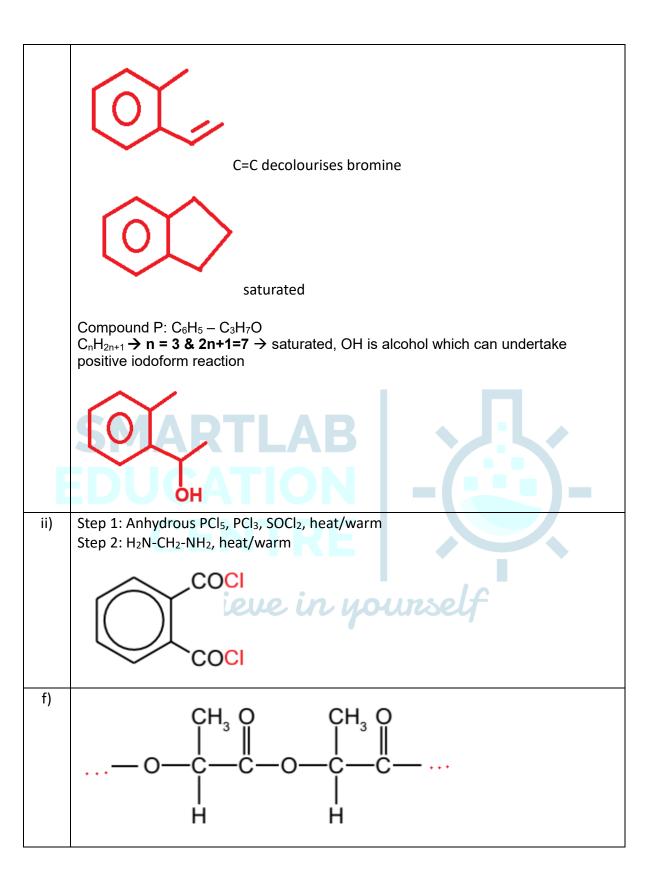

## 2026 H2 Chem Sample P3 Ans


| Qn       | Ans                                                                                                                                         |  |  |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1 a)     | Rate of forward reaction = Rate of backward reaction                                                                                        |  |  |  |  |  |  |
|          | Concentration of reactants and products remain unchanged over time                                                                          |  |  |  |  |  |  |
| bi)      | $K_p = \underline{P_{H2} P_{CO}}$                                                                                                           |  |  |  |  |  |  |
|          | P <sub>H2O</sub>                                                                                                                            |  |  |  |  |  |  |
|          | Unit of Kp = atm                                                                                                                            |  |  |  |  |  |  |
| ii)      | Start state                                                                                                                                 |  |  |  |  |  |  |
|          | $H_2O + C$ (s) $\rightleftharpoons H_2 + CO$                                                                                                |  |  |  |  |  |  |
|          | Initial/atm 2.00 0                                                                                                                          |  |  |  |  |  |  |
|          | Chem/atm                                                                                                                                    |  |  |  |  |  |  |
|          | Equ/atm +1.40                                                                                                                               |  |  |  |  |  |  |
|          |                                                                                                                                             |  |  |  |  |  |  |
|          | Equilibrium                                                                                                                                 |  |  |  |  |  |  |
|          | $H_2O + C (s) \Leftrightarrow H_2 + CO$                                                                                                     |  |  |  |  |  |  |
|          | Initial/atm 2.00 0                                                                                                                          |  |  |  |  |  |  |
|          | Chem/atm -1.40 +1.40 +1.40                                                                                                                  |  |  |  |  |  |  |
|          | Equ/atm 0.60 +1.40 +1.40                                                                                                                    |  |  |  |  |  |  |
|          | SMADTIARI A J. J.                                                                                                                           |  |  |  |  |  |  |
|          | Total pressure = 3.40 atm                                                                                                                   |  |  |  |  |  |  |
| iii)     | $K_p = P_{H2} = 1.40 \times 1.40 = 3.27 \text{ atm}$                                                                                        |  |  |  |  |  |  |
|          | P <sub>H2O</sub> 0.60                                                                                                                       |  |  |  |  |  |  |
| ci)      | Faster reaction rate due to larger surface area of the carbon resulting in higher rate of collision and effective collision                 |  |  |  |  |  |  |
|          | Time taken is shorter                                                                                                                       |  |  |  |  |  |  |
| ii)      |                                                                                                                                             |  |  |  |  |  |  |
| '''      | Kp remains the same → Affected only by temperature changes Position of equilibrium does not change as amt of carbon used is not featured in |  |  |  |  |  |  |
|          | overession                                                                                                                                  |  |  |  |  |  |  |
| d)       | CO forms dative bonds with Fe2+ in haemoglobin instead of with oxygen molecule                                                              |  |  |  |  |  |  |
| ر م<br>ا | which is non polar                                                                                                                          |  |  |  |  |  |  |
|          | CO is polar and forms a stronger ligand bond with Fe <sup>2+</sup> denying its ability to bind                                              |  |  |  |  |  |  |
|          | with oxygen molecule and hence transporting them to cells in the human body                                                                 |  |  |  |  |  |  |
| ei)      | $(CH_3)_2C=CH_2 + CO + H_2O \rightarrow (CH_3)_2CHCH_2CO_2H / Type 2$                                                                       |  |  |  |  |  |  |
|          | $C_6H_5CHO + CO + H_2O \rightarrow C_6H_5CH(OH)CO_2H$ / Type 3                                                                              |  |  |  |  |  |  |
|          | $(CH_3)_3COH + CO \rightarrow (CH_3)_3CCO_2H / Type 1 [unable to use Type 2 for C=C]$                                                       |  |  |  |  |  |  |
| ii)      | Step 1: dilute aq H <sub>2</sub> SO <sub>4</sub> , K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> , heat                                     |  |  |  |  |  |  |
|          | Step 2: HCN with trace amount of KCN/KOH, 10°C                                                                                              |  |  |  |  |  |  |
|          | Step 3: dilute aq HCl/HNO₃, heat/reflux                                                                                                     |  |  |  |  |  |  |
|          | D: C <sub>6</sub> H <sub>5</sub> COCO <sub>2</sub> H                                                                                        |  |  |  |  |  |  |
|          | E: C <sub>6</sub> H <sub>5</sub> C(OH)(CN)CO <sub>2</sub> H                                                                                 |  |  |  |  |  |  |
| 2 ai)    | Pt(s)                                                                                                                                       |  |  |  |  |  |  |
| ii)      | 1.0moldm <sup>-3</sup> for each cation/anion                                                                                                |  |  |  |  |  |  |
| iii)     | Ecell = 1.33 – 0.34 = 0.99V                                                                                                                 |  |  |  |  |  |  |
| iv)      | $Cr_2O_7^{2-} + 14H^+ + 3Cu \rightleftharpoons 2Cr^{3+} + 7H_2O + 3Cu^{2+}$                                                                 |  |  |  |  |  |  |
| v)       | $\Delta G = - \text{nFEcell} = - (6 \times 96500 \times 0.99) = -573,210 \text{ J} = -573 \text{ kJ/mol}$                                   |  |  |  |  |  |  |
| b)       | PV = nRT $\rightarrow$ 1.00 x 10 <sup>5</sup> x 126 x 10 <sup>-6</sup> = n (8.31)(300)                                                      |  |  |  |  |  |  |

|      | No of mol of $H_2 = 0.00505415 mol$                                                          |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
|      | No of mol of Zn = No of mol of $H_2 = 0.00505415mol$                                         |  |  |  |  |  |
|      | Mass of Zn = 0.3305 = 0.331g                                                                 |  |  |  |  |  |
|      |                                                                                              |  |  |  |  |  |
|      | No of mol of Cu = No of mol of MnO <sub>4</sub> $^{-}$ x $^{5}/_{2}$ = 0.0122 $mol$          |  |  |  |  |  |
|      | Mass of Zn = 0.7747 = 0.775g                                                                 |  |  |  |  |  |
| ci)  | OH <sup>-</sup> neutralises the H <sup>+</sup>                                               |  |  |  |  |  |
| 0.,  | [H <sup>+</sup> ] decreases causing position of equilibrium to shift forward                 |  |  |  |  |  |
|      | More chromate(VI) than dichromate(VI) hence colour changes from orange to                    |  |  |  |  |  |
|      | yellow                                                                                       |  |  |  |  |  |
| ii)  | Lowering temperature favours exothermic reaction                                             |  |  |  |  |  |
| '''  | Forward reaction is endothermic & enthalpy change of forward reaction > 0                    |  |  |  |  |  |
| iii) | CrO <sub>4</sub> <sup>2-</sup> forms ppt with Ba <sup>2+</sup>                               |  |  |  |  |  |
| '''' | [CrO <sub>4</sub> <sup>2-</sup> ] decreases causing position of equilibrium to shift forward |  |  |  |  |  |
|      | [H+] increases & pH decreases                                                                |  |  |  |  |  |
| 3 a) | $Cl_2 + AlCl_3 \rightarrow Cl^+ + AlCl_4^-$                                                  |  |  |  |  |  |
| Jaj  | Lewis base/electron pair donor                                                               |  |  |  |  |  |
|      | $  _2 +   _{-} \rightarrow   _{-}$                                                           |  |  |  |  |  |
|      | Lewis acid/electron pair acceptor                                                            |  |  |  |  |  |
|      | Lewis acid/electron pair acceptor                                                            |  |  |  |  |  |
| bi)  | HCl(g), rtp                                                                                  |  |  |  |  |  |
| ii)  | Cl <sub>2</sub> (g), rtp, absence of UV light                                                |  |  |  |  |  |
| iii) | Anhydrous PCI <sub>5</sub> /PCI <sub>3</sub> /SOCI <sub>2</sub> , heat/warm                  |  |  |  |  |  |
| iv)  | Anhydrous PCI <sub>5</sub> /PCI <sub>3</sub> /SOCI <sub>2</sub> , heat/warm                  |  |  |  |  |  |
| v)   | Cl <sub>2</sub> (g), AlCl <sub>3</sub> , heat                                                |  |  |  |  |  |
| vi)  | Cl <sub>2</sub> (g), rtp, UV light                                                           |  |  |  |  |  |
| ci)  | C-H bond is not polarised                                                                    |  |  |  |  |  |
| Cij  | Hydrogen atom is neither electrophilic or nucleophilic to react with acid/base               |  |  |  |  |  |
|      | BE(C-H) bond is high & carbon is unable to be oxidised                                       |  |  |  |  |  |
| ii)  | Free radical substitution                                                                    |  |  |  |  |  |
| iii) | Initiation                                                                                   |  |  |  |  |  |
| ,    | •                                                                                            |  |  |  |  |  |
|      | Cl <sub>2</sub> → 2Cl                                                                        |  |  |  |  |  |
|      | (UV light)                                                                                   |  |  |  |  |  |
|      |                                                                                              |  |  |  |  |  |
|      | Propagation                                                                                  |  |  |  |  |  |
|      |                                                                                              |  |  |  |  |  |
|      | $CI + C_2H_6 \rightarrow CH_3CH_2 + HCI$                                                     |  |  |  |  |  |
|      | Cl <sub>2</sub> + CH <sub>3</sub> CH <sub>2</sub> → CH <sub>3</sub> CH <sub>2</sub> Cl +Cl   |  |  |  |  |  |
|      | 5.2 5.135112 7 5.13511251 7 5.                                                               |  |  |  |  |  |
|      | Termination                                                                                  |  |  |  |  |  |
|      | • •                                                                                          |  |  |  |  |  |
|      | CI + CH₃CH₂ → CH₃CH₂CI                                                                       |  |  |  |  |  |
|      |                                                                                              |  |  |  |  |  |



|      | lowest energy le                                                                                                                                                             | vel: ligand bonds form                                                                 | ed between ligand                       | ds and central atom in the                        |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|--|--|--|
|      | direction x, y, z axes is the furthest away from electrons that reside in the 3d <sub>xy</sub> 3d <sub>yz</sub>                                                              |                                                                                        |                                         |                                                   |  |  |  |
|      | 3d <sub>xz</sub> plane resulting in minimum repulsion forces between the electrons residing in                                                                               |                                                                                        |                                         |                                                   |  |  |  |
|      | the ligand bond and these orbitals                                                                                                                                           |                                                                                        |                                         |                                                   |  |  |  |
| di)  | Cu <sup>+</sup> (1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3                                                                                                           | 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>10</sup> )                                     |                                         |                                                   |  |  |  |
| ii)  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                        | For coordination complexes of the transition metals, the 5 d orbitals are split into 2 |                                         |                                                   |  |  |  |
| ,    | sets of energy levels.                                                                                                                                                       |                                                                                        |                                         |                                                   |  |  |  |
|      | The d electron thus undergoes d-d transitions when white light is directed on the                                                                                            |                                                                                        |                                         |                                                   |  |  |  |
|      | complex (vacancies required in d orbitals)                                                                                                                                   |                                                                                        |                                         |                                                   |  |  |  |
|      |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
|      | During the d – d transition/promotion of electron from lower to higher energy                                                                                                |                                                                                        |                                         |                                                   |  |  |  |
|      | level, the d electron absorbs certain wavelength of light from the visible region of                                                                                         |                                                                                        |                                         |                                                   |  |  |  |
|      | the electromagnetic spectrum and reflects the remaining wavelength, which appears as the colour observed. The colour observed is thus the complement of the colour absorbed. |                                                                                        |                                         |                                                   |  |  |  |
|      |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
|      |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
|      | Cu <sup>+</sup> has a fully filled 3d subshell and no d electron is able to absorb wavelength light and promote from lower to higher energy level                            |                                                                                        |                                         |                                                   |  |  |  |
|      |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
|      | <b>LEMA</b>                                                                                                                                                                  | DTI AI                                                                                 |                                         |                                                   |  |  |  |
| iii) | Strength of ligand bond formed Mn3+/Cu2+ with water molecules are varied,                                                                                                    |                                                                                        |                                         |                                                   |  |  |  |
|      | resulting in diffe                                                                                                                                                           | rent energy gap betwee                                                                 | en the separated s                      | ets of d orbitals.                                |  |  |  |
|      |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
|      | Different wavelength of light from visible region would be absorbed.                                                                                                         |                                                                                        |                                         |                                                   |  |  |  |
| iv)  |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
|      | $\Gamma$ H <sub>2</sub> O $\Gamma$ <sup>2+</sup>                                                                                                                             |                                                                                        |                                         |                                                   |  |  |  |
|      | H <sub>0</sub> O <sub>2</sub>                                                                                                                                                | 04                                                                                     | T Y                                     |                                                   |  |  |  |
|      | 20 3                                                                                                                                                                         | Cu VIII CII 2                                                                          |                                         |                                                   |  |  |  |
|      | H <sub>2</sub> O OH <sub>2</sub> in yourself                                                                                                                                 |                                                                                        |                                         |                                                   |  |  |  |
|      |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
|      | L OH <sub>2</sub> J                                                                                                                                                          |                                                                                        |                                         |                                                   |  |  |  |
|      |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
| ei)  | ΔH = sum of ent                                                                                                                                                              | halpies of formation of                                                                | f products - reacta                     | ents                                              |  |  |  |
| - /  |                                                                                                                                                                              | x 33.2) + (0/elements)                                                                 | •                                       |                                                   |  |  |  |
| ii)  | $CuO \leftrightarrow \frac{1}{2} Cu_2O$                                                                                                                                      | , , , , ,                                                                              | , ===::                                 |                                                   |  |  |  |
| ,    | 555 1772 5525 174 52 (6)                                                                                                                                                     |                                                                                        |                                         |                                                   |  |  |  |
|      | Reaction 4.1 would have a higher entropy change per mole of CuO since it releases                                                                                            |                                                                                        |                                         |                                                   |  |  |  |
|      | 2.5 mol of gases as compared to 4.2 which releases 0.5 mol                                                                                                                   |                                                                                        |                                         |                                                   |  |  |  |
|      |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
| fi)  | 2.5 mol of gases                                                                                                                                                             | as compared to 4.2 wh                                                                  | ich releases 0.5 m                      | ol                                                |  |  |  |
| fi)  |                                                                                                                                                                              |                                                                                        |                                         |                                                   |  |  |  |
| fi)  | 2.5 mol of gases                                                                                                                                                             | as compared to 4.2 wh                                                                  | ich releases 0.5 m                      | functional groups                                 |  |  |  |
| fi)  | 2.5 mol of gases                                                                                                                                                             | as compared to 4.2 wh                                                                  | type of reaction                        | functional groups identified in L                 |  |  |  |
| fi)  | 2.5 mol of gases  test on L  addition of Na <sub>2</sub> CO <sub>3</sub> (aq) addition of                                                                                    | as compared to 4.2 wh                                                                  | type of reaction acid-base              | functional groups identified in L carboxylic acid |  |  |  |
| fi)  | 2.5 mol of gases  test on L  addition of Na <sub>2</sub> CO <sub>3</sub> (aq)                                                                                                | as compared to 4.2 who observations / results effervescence                            | type of reaction                        | functional groups identified in L                 |  |  |  |
| fi)  | 2.5 mol of gases  test on L  addition of Na <sub>2</sub> CO <sub>3</sub> (aq)  addition of 2,4-DNPH                                                                          | observations / results  effervescence  orange precipitate formed                       | type of reaction acid-base condensation | functional groups identified in L carboxylic acid |  |  |  |
| fi)  | 2.5 mol of gases  test on L  addition of Na <sub>2</sub> CO <sub>3</sub> (aq) addition of                                                                                    | as compared to 4.2 who observations / results effervescence                            | type of reaction acid-base              | functional groups identified in L carboxylic acid |  |  |  |



